If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2=148
We move all terms to the left:
3z^2-(148)=0
a = 3; b = 0; c = -148;
Δ = b2-4ac
Δ = 02-4·3·(-148)
Δ = 1776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1776}=\sqrt{16*111}=\sqrt{16}*\sqrt{111}=4\sqrt{111}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{111}}{2*3}=\frac{0-4\sqrt{111}}{6} =-\frac{4\sqrt{111}}{6} =-\frac{2\sqrt{111}}{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{111}}{2*3}=\frac{0+4\sqrt{111}}{6} =\frac{4\sqrt{111}}{6} =\frac{2\sqrt{111}}{3} $
| 4=4(2w-8)-11w | | 13+4d=-31 | | 6x+8+8=8x-4 | | 3x(-3)=-16 | | 15=g+23-2gg | | 20=-16t^2 | | 11k-3(k+11)=8k-7 | | -42m-42=-35m-30-6m | | 200=-300+20x | | -2(x+3)^2+50=0 | | 140=-300-20x | | 28x=12 | | -52+x=180 | | 4(w−6)≤−=12 | | 112+120+x=180 | | x=-80+5/8 | | 4a=3(4)+10 | | 85-19x=11-2x | | 3+16x+13(4+6)=23 | | 8{x}^{2}+9x+J=0 | | 4(2x+6)=64+4x | | (4y-5)(4y+5)=0 | | 5(2y+4)+6=106 | | 2x+3/0(4x+16)=7 | | 5(x-8)+5x=-90 | | 3x=1/10^0.3x | | {12+6x}{3}={5-9}{2} | | 2/3×n=5/6 | | 4y^2–5y=0 | | y–35=–11 | | 7/2x+12=6+5/2x | | 2x+3/(4x+16)=7 |